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Introduction. The “plane wave” is an abstraction of such indispensable utility
that in many contexts it would seem picayune to remark that such a thing
is never encountered in Nature. It is from the theory of plane waves that
we inherit—and to which we look to illustrate the meaning of—much of the
language (frequency and wavelength, direction of propagation, polarization,
intensity) that we use to classify/discuss waves-in-general—solutions-in-general
of the diverse linear wave equations encountered in a great variety of subject
areas.

But when we walk into the laboratory, with heads full of such “plane wave
language and imagery,” we encounter waves of finite temporal duration, of finite
spatial extent, waves that transport finitely much energy/momentum/angular
momentum, waves that are in this or that sense “normalizable.” So habituated
are we to the practice of construing the real things before us as “assembled
populations of spooks” (wavepackets) that we are heedless of odd light which
our practice casts upon any claim that our science is rooted in “reductionism.”

My intention here is not to argue that one should pay heed to that small
philosophical conundrum (much less to suggest how the point might be
resolved!), but to engage a bit in the very practice that calls the conundrum
into being.

Recently I developed (renewed) interest in these questions: How does one
lend substance to the frequently-encountered claim that “angular momentum is
transported in the fringes of a lightbeam”? And how is that angular momentum
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related to the polarizational state of the beam? Do Stokes parameters—which
serve so elegantly to describe the polarizational states of plane waves—serve
as well to describe the polarization of laterally-confined optical beams? To
approach such questions I had to decorate the standard “scalar theory of
Gaussian beams” with EEE and BBB vectors, since those are basic to any account of
the mechanical properties of electromagnetic fields: I had, in short, to develop
a theory of “beams as electromagnetic objects,” a theory of “lightbeams.”1

This I was able to do in a degree of detail sufficient to my immediate needs,2

but the theory proceeds from a seemingly innocuous approximation which it
is my present intention to try to remove, and in its present (sketchy) state of
development fails to address certain formal/physical fine points, which I hope
here to do.

In order more clearly to separate points of principle from the clutter of
details I will look first to the 2-dimensional theory, then to the complications
introduced by a third space-dimension. But a preliminary word about the
(degenerate) one-dimensional theory may be in order:

In one dimension (which is to say: in 2-dimensional spacetime) the “beam
problem” is, for obvious reasons, trivial, and the plane wave concept empty.
Looking for monochromatic solutions

ϕ(t, z) = eiωt · φ(z)

of the wave equation

ϕ = 0 with ≡
(

1
c

∂
∂t

)2 −
(

∂
∂z

)2

we encounter the “one-dimensional Helmholtz equation”(
∂2

z + k2
)
φ = 0 with k2 = (ω/c)2

Immediately φ(z) ∼ e±ikz, so we don’t have much to work with:

ϕ(t, z) = linear combination of ei(ωt−kz) and ei(ωt+kz)

From this material we can construct running waves ϕ ∼ cos(ωt − kz) and
standing waves (in which we have no present interest), but to construct waves
of finite duration or—which comes to the same thing—of limited spatial reach
we must abandon the monochromaticity assumption. Note also that it is, even
in such an impoverished context, entirely possible to speak of “vectorial waves”
ϕ ∼ AAA cos(ωt− kz), the general point being that AAA need not live in spacetime,
but can inhabit a vector space of arbitrary dimension . . . and that it is, in
particular, entirely possible to speak of the “polarization of a transverse wave”
(as one would find it entirely natural to do in a “theory of guitar strings.”)

1 Webster recognizes “lightbulb” and “lighthouse,” but insists upon “light
beam.” The eccentric usage which I allow myself is responsive, I guess, to the
same Germanic sensibility that prefers “wavepacket” over “wave packet”: the
sense that unitary entities are entitled to single-word names.

2 See Chapter 5, §5 in classical electrodynamics ().
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2-dimensional theory

1. Essentials of the Gaussian theory of scalar beams. In 3-dimensional spacetime
the scalar wave equation reads{(

1
c

∂
∂t

)2 −
(

∂
∂x

)2 −
(

∂
∂z

)2
}
ϕ(t, x, z) = 0 (1)

The monochromaticity assumption ϕ(t, x, z) = eiωt·φ(x, z) directs our attention
to the Helmholtz equation{(

∂
∂x

)2 +
(

∂
∂z

)2 + κ2
}
φ(x, z) = 0 with κ2 = (ω/c)2 (2)

Exponential solutions are of the form

φ(x, z) ∼ e−i(px+k z) with p2 + k2 = κ2 (3)

but the “theory of Gaussian beams” proceeds from a quest for solutions of the
specialized form

φ(x, z) = e−iκz · ψ(x, z) (4)

which requires {(
∂
∂x

)2 +
(

∂
∂z

)2
}
ψ(x, z) = 2iκ ∂

∂zψ(x, z) (5)

The theory derives its distinctive coloration from an assumption that the red
term can be abandoned. The surviving equation{(

∂
∂x

)2
}
ψ(x, z) = 2iκ ∂

∂zψ(x, z) (6)

is structurally identical to the 1-dimensional free particle Schrödinger equation,
and from its innumerable solutions one selects the “diffusive solution”

ψ(x, z) = 1√
1 − i(z/Z)

exp
{
− a

x2

1 − iz/Z

}
: 2aZ ≡ κ (7)

that “evolves in time z” from ψ(x, 0) = e−ax2
. Here a (which has obvious

physical dimension) can be assigned any positive real value, and Z ≡ κ/2a can
be looked upon as a handy abbreviation. Notice now that, as Mathematica is
quick to confirm,

=
∫ +∞

−∞
1√
4πa

e−
1
4a p2 · e−i

{
px−(p2/4aZ)z

}
dp (8)

The functions e−i
{

px−(p2/4aZ)z
}

are readily seen to be exact solutions of the
“Schrödinger equation” (6): exact solutions, that is to say, of the wrong
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equation! To summarize: Gaussian beam theory, in its simplest manifestation,
purports to extract informative physics from functions of the form

ϕ(t, x, z) =
∫ +∞

−∞
G(p) · ei

{
ωt−px−kz

}
dp : k = κ− p2/2κ (9)

G(p) = 1√
4πa

e−
1
4a p2

—functions which are, in fact, not solutions of the wave equation (1). How can
such a claim be supported?

We have

p2 + k2 = p2 +
[
κ− p2/2κ

]2
= κ2 +

[
p2/2κ

]2 (10)

whereas
= κ2 is stipulated at (3)

Moreover, the latter condition requires that −κ � p � +κ while the integral
(9) ranges on −∞ � p � +∞. The reason the red term hurts less and less as
the parameter 1/4a becomes large—the reason we “can have it both ways”—is
exposed in the following figure:

k

p

Figure 1: The black circle locates the points that satisfy the exact
relation p2 + k2 = κ2; the red arcs locate the points that satisfy the
approximate relation (10). The blue Gaussians become narrower as
1/4a becomes larger, and—by discriminating against p-values where
the red and black curves differ significantly—render the distinction
essentially invisible.

2. Exact theory of 2-dimensional scalar beams. Parameterize the solutions of
p2 + k2 = κ2 by writing

p = κ sin θ

k = κ cos θ

}
(11)



Exact theory of scalar beams in 2-space 5

and note in passing that

k = κ
√

1 − (p/κ)2 = κ− (p2/2κ) + · · ·

gives back precisely the approximate relation (10) when the higher-order terms
are abandoned (which, of course, is why the black and red curves in Figure 1
conform so neatly when p is small).

The exact solutions of (1) can in this notation be represented

ϕ(t, x, z) =
∫ +π

−π

g(θ) · ei
{

ωt−κ[x sin θ+z cos θ]
}
dθ (12)

Though the weight function g(θ) is arbitrary, we have interest in assigning
to it a “Gaussian” design. How is that to be accomplished on the restricted
compass of a circle? One (in my view especially “natural”) way to accomplish
that objective would be to adopt the stereographic procedure described in the
following figure:

u

θ

α

Figure 2: South-polar stereographic projection • → • from the line
tangent at the North Pole onto a circle of radius κ. Distributions
G(u) written onto the line become distributions g(θ) written onto
the circle by the rule G(u) du = g(θ) dθ.
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Working from the figure, we have tanα = u/2κ = tan 1
2θ, giving

u = 2κ tan 1
2θ = κ

{
θ + 1

12θ
3 + 1

120θ
5 + · · ·

}
(13.1)

and
du = κ sec2 1

2θ dθ = κ
{
1 + 1

4θ
2 + 1

24θ
4 + · · ·

}
dθ (13.2)

If, in particular, we take G(u) to be the normalized Gaussian

G(u) = 1√
4πa

e−
1
4a u2

(14.1)

then we find

g(θ) = κ 1√
4πa

sec2 1
2θ · e

− 1
a κ2 tan2 1

2 θ (14.2)

= κ 1√
4πa

sec2 1
2θ · e

− 1
a κ2[sec2 1

2 θ−1]

= κ 1√
4πa

{
1 + 1

4θ
2 + 1

24θ
4 + · · ·

}
· e− 1

a κ2[ 14 θ2+ 1
24 θ4+···]

We are gratified—but not at all surprised—to be informed by Mathematica
that

NIntegrate[g(θ)], {θ,−π,+π}] = 1.

when the parameters κ and a are assigned representative numerical values. We
note also that as a becomes small we in leading approximation have

∫ +π

−π

g(θ) dθ =
∫ +π

−π

κ 1√
4πa

e−
1
4a κ2θ2

dθ = Erf
[

πκ
2
√

a

]
↓
= 1 when ±π replaced by ±∞

We are brought thus to the construction

ϕ(t, x, z) =
∫ +π

−π

κ 1√
4πa

sec2 1
2θ · e

− 1
a κ2 tan2 1

2 θ · ei
{

ωt−κ[x sin θ+z cos θ]
}
dθ (15)

of the fundamental object in what might plausibly be called the “exact theory
of approximately Gaussian beams,” a theory that gives back the more familiar
“approximate theory of exactly Gaussian beams” as a becomes small:

↓
=

∫ +π

−π

κ 1√
4πa

· e− 1
4a κ2θ2 · ei

{
ωt−xκθ−zκ[1− 1

2 θ2]
}
dθ

The preceding equation is brought into precisely agreement with (9) if one
adjusts the limits on the integral (π → ∞) and also the notation: κθ → p
(which, according to (13.1), makes good sense when θ is small; i.e., in the
vicinity of the North Pole).
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The situation with regard to (15) is clarified if, within that exact context,
one reverts (by change of variable) to u -notation: drawing upon (13) and the
elementary fact3 that if t ≡ tan 1

2θ = u/2κ then

sin θ = 2t
1 + t2

= 4κu
4κ2 + u2

= 1
κu

{
1 − (u/2κ)2 + (u/2κ)4 − · · ·

}
cos θ = 1 − t2

1 + t2
= 4κ2 − u2

4κ2 + u2
= 1 − 2(u/2κ)2 + 2(u/2κ)4 − · · ·

we obtain

ϕ(t, x, z) =
∫ +∞

−∞
1√
4πa

e−
1
4a u2· exp

{
i
[
ωt− κ

4κu
4κ2 + u2

x− κ
4κ2 − u2

4κ2 + u2
z
]}

du (16)

remark: The stereographic projection trick led us to this result
by a series of natural steps. But we would have been led directly to
(16) if, in place of (11), we had adopted the following non-obvious
parameterization

p = κ
4κu

4κ2 + u2
= u + · · ·

k = κ
4κ2 − u2

4κ2 + u2
= κ− (u2/2κ) + · · ·

of the solutions of p2 +k2 = κ2. The labor invested in development
of the polar representation is, however, not labor wasted, for that
representation remains indispensable in other connections: see, for
instance, Figure 3.

When a is sufficiently small the integral at (16) is readily performed in
analytical closed form: Mathematica supplies

ϕ(t, x, z) =
∫ +∞

−∞
1√
4πa

e−
1
4a u2· exp

{
i
[
ωt− ux−

[
κ− (u2/2κ)

]
z
]}

du

= ei(ωt−κz) · 1√
1 − iz/Z

exp
{
− a

x2

1 − iz/Z

}
(17)

with Z ≡ κ/2a. We have recovered the standard (approximate) Gaussian beam.
But exact analytical evaluation of the integral (15/16) appears to present an
intractable problem: the best I can presently hope to do is to discuss some of
its properties. Look, for example, to its asymptotics: if we write

x = r sinα

z = r cosα

}
(18)

3 M. Abramowitz & I. Stegun, Handbook of Mathematical Functions (),
4.3.23.
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1

2

3

Figure 3: Polar plots, in the cases

κ = 1 and a =
{
0.01, 0.04, 0.08, 0.20

}
of the function

g(θ;κ, a) ≡ κ 1√
4πa

sec2 1
2θ · e

− 1
a κ2 tan2 1

2 θ

introduced at (14.2); i.e., of what “Gaussian weighting on the circle”
does to unit kkk-vectors that point in various directions. Polar plots
of distributions are visually deceptive: one has∫ +π

−π

g(θ;κ, a) dθ = 1 : all κ, all a

but the area within the loops is given by∫ +π

−π

1
2 [g(θ;κ, a)]2 dθ =

{
0.99985, 0.50366, 0.35967, 0.23417

}
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then (15) becomes

ϕ(t, x, z) = eiωt

∫ +π

−π

g(θ) e−irκ cos(θ−α) dθ (19.1)

which yields in the the limit r → ∞ to the “method of stationary phase:”4 we
expect on that basis to have

∼
∑

zeros θ0
of g′(θ)

eiωtg(θ0) e−irκ cos(θ0−α)

√
2π

rκ cos(θ0 − α)
e±

1
4 iπ

where d
dθ [−κ cos(θ − α)] = 0 supplies θ0 = α + nπ (effectively: θ0 = α else

θ0 = α± π, of which only one falls within the range of the
∫

) and where we are
to take the upper or lower sign according as d2

dθ2 [−κ cos(θ − α)] = κ cos(θ − α)
is positive or negative at θ0. The specific implication of this line of argument
is that

∼
√

2π/κrg(α) ei(ωt−κr+ 1
4 π)

+
√

2π/κrg(α− π) ei(ωt+κr− 1
4 π)

(19.2)

The first term describes an out-rushing monochromatic cylindrical wave, the
amplitude of which falls off as r−

1
2 (mechanical attributes of the wave, since

quadratic in amplitude, therefore fall off as r−1,which is to say:“geometrically”).
The second term describes a phase-shifted in-rushing cylindrical wave. The
angular attenuation factor g(α) was seen at (14.2) to be symmetric and periodic,
so g(α+π) = g(α−π), and it has the form shown in Figure 3. The implication is
that g(α)-term predominates in the forward direction (where the g(α− π)-term
can in excellent approximation be ignored), and that the terms exchange roles
in the backward direction.

The result achieved at (19.2) conforms beautifully to physical intuition, yet
conceals some points worthy of comment:

• Retreat in the direction α to a point far from the origin. There you see
what looks locally like a (phase-shifted) version of the plane wave

ei(ωt−kkk·xxx) with kkk =
(

κ sinα
κ cosα

)

But you have not entirely escaped from the efffects of the other Fourier
components of the wave field—those with kkk -vectors not parallel to your
direction of retreat (each of which, after all, extends infinitely far in all
spacetime directions): they have conspired to produce the angular/radial
attenuation factor and phase shift .

• The argument that led (19.1)→(19.2) exploited special properties of the
“circular Gaussian” g(θ) only in its final steps: we can therefore expect
something very like it to pertain to any g(θ); i.e., to any 2-dimensional
superposition of plane waves.

4 See F. W. J. Olver, Asymptotics and Special Functions (), page 96.



10 Theory of lightbeams

In the approximation to Gaussian beam theory we at (17) had a result that
can be expressed

ϕ(t, x, z) = 1√
1 + (z/Z)2

exp
{
− a

x2

1 + (z/Z)2
}
· ei℘(t,x,z)

= [amplitude function A(x, z)] · [oscillatory factor cos℘(t, x, z)]

The (t-independent!) amplitude function is more susceptible to close study than
the oscillatory factor, and is plotted in the following figure:

Figure 4: Graph of A(x, z; a, Z) in the case a = 1 and Z = 5. For
clarity, the transverse x-axis has been stretched by a factor of two:
x ranges on [−10,+10 ], z ranges on [−20,+20 ].

It will, however, remain difficult to discuss the (small) changes brought about
in the exact theory until some way is found to perform the integral encountered
on the right side of (16).

2. Fourier analysis of the “circular Gaussian distribution function.” We described
at (14.2), and again in the caption to Figure 3, the result of projecting a
Gaussian onto a circle of radius κ. It will facilitate the work at hand if we
adjust our notation, writing

g(θ;β) ≡
√

β/4π sec2 1
2θ · e

−β tan2 1
2 θ

=
√

β/4π
{
1 + 1

4θ
2 + 1

24θ
4 + · · ·

}
· e−β[ 14 θ2+ 1

24 θ4+···]

where β ≡ κ2/a is a dimensionless lumped parameter. The notation emphasizes
that where formerly we employed the phrase “as a becomes small” we could
just as well have alluded to “the high-frequency limit” κ ↑ ∞: that these two
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notions are equivalent becomes clear when one looks again to Figure 2. The
limiting form of the statement

∫ +π

−π

g(θ;β) dθ =
∫ +π

−π

√
β/4π sec2 1

2θ · e
−β tan2 1

2 θ dθ = 1 : all β (20.1)

can—for diagramatically evident reasons (the distribution has become localized
to the region where the circle and its tangent are nearly coincident)—be cast
in this “classically Gaussian” form

∫ +∞

−∞

√
β/4π e−

1
4 βθ2

dθ = 1 (20.2)

which, though valid for all β, can be extracted from (20.1) only as β becomes
large.

So much by way of preparation. I present the following figure to emphasize
that g(θ;β) is, for all β, an even function of θ, and lives on the interval [−π,+π ].

3

−π +π

Figure 5: Cartesian plots of precisely the functions g(θ;κ, a)—now
called g(θ;β) with β ≡ κ2/a—of which polar plots are presented in
Figure 3. In this display the area under each curve is unity. The
peaks become narrower/taller in the high-frequency limit β ↑ ∞, and
it becomes evident that

lim
β↑∞

g(θ;β) = δ(θ) (21)

The functions

C0(θ) ≡ 1√
2π

Cn(θ) ≡ 1√
π

cosnθ : n = 1, 2, 3, . . .
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are well known to be orthonormal∫ +π

−π

Cm(θ)Cn(θ) dθ = δmn

and complete within the space of such functions. We expect, therefore, to be
able to write

g(θ;β) =
∑
m

gm(β)Cm(θ) (22.1)

gm(β) =
∫ +π

−π

g(θ;β)Cm(θ) dθ (22.2)

The evaluation of g0(β) is, by (20.1), immediate

g0(β) = 1√
2π

but the Fourier coefficients of higher order are intricate: Mathematica supplies

gm(β) =
∫ +π

−π

√
β/4π sec2 1

2θ · e
−β tan2 1

2 θ 1√
π

cosnθ dθ

⇓
g1(β) = − 1√

π
+ 2 ·

√
βeβ

{
1 − erf

(√
β
)}

(23.1)

g2(β) = + 1+8β√
π

− (4 + 8β) ·
√

βeβ
{
1 − erf

(√
β
)}

(23.2)

g3(β) = − 1+24β+16β2
√

π
+ (6 + 32β + 16β2) ·

√
βeβ

{
1 − erf

(√
β
)}

(23.3)
...

which—ugly though they are—are found at β = 10 to agree precisely with the
results of numerical integration. But if we work in the high-frequency (or
Gaussian) approximation—which is to say: from

gm(β) ≈
∫ +∞

−∞

√
β/4π e−

1
4 βθ2 1√

π
cosnθ dθ

—then we obtain results of striking simplicity:

g1(β) ≈ 1√
π
e−1/β (24.1)

g2(β) ≈ 1√
π
e−4/β (24.2)

g3(β) ≈ 1√
π
e−9/β (24.3)

...

I interrupt this discussion to indicate how the expressions on the right side of
(23) come to share the asymptotic properties of their counterparts in (24). We
are informed at 7.1.23 in Abramowitz & Stegun that√

βeβ
{
1 − erf

(√
β
)}

= 1√
π

{
1 − 1

2β + 3
(2β)2 − 15

(2β)3 + 35
(2β)4 − · · ·

}
Returning with that information to (23) and simplifying, we obtain
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Figure 6: Comparison (reading from top ↓ bottom) of the functions
g1(β), g2(β) and g3(β) that appear on the right sides of (23) with (in
red) their counterparts in (24). The blue line marks the asymptote
at 1/

√
π. It is evident that Mathematica encountered a numerical

instability problem when compiling the data: its source is discussed
in connection with the next figure.
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Figure 7: Graphs of the function√
βeβ

{
1 − erf

(√
β

)}
≡

√
βeβerfc

(√
β

)
which occurs as a factor in (23). The blue line marks the asymptote
at 1/

√
π, my conjecture being that

lim
β↑∞

√
βeβ

{
1 − erf

(√
β

)}
= 1√

π

[This is, in fact, a classic result: see Abramowitz & Stegun 7.1.23.]
Since

√
βeβ ↑ ∞ while

{
1−erf

(√
β

)}
↓ 0, it might seem remarkable

that their product approaches a finite limit, but this is in fact a
common occurrence: consider the example 1

x sinx. On evidence
of the lower figure, Mathematica appears to find its work to be
computationally delicate for β larger than about 30, and I take this
fact to lie at the heart of the instability evident in Figure 6.

g1(β) = 1√
π

{
1 − 1

β + 3
2β2 − 15

4β3 + · · ·
}

g2(β) = 1√
π

{
1 − 4

β + 12
β2 − 45

β3 + · · ·
}

g3(β) = 1√
π

{
1 − 9

β + 99
2β2 − 795

4β3 + · · ·
}

...

which establishes the point at issue.
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Figure 8: Superimposed plots of the functions gm(β) defined at
(24): m = 1, 2, 3, 4, 5, and of their shared asymptote at 1/

√
π. It

is seen that the Fourier coefficients gm(β) switch on sequentially as
β ascends. Specifically: gm(β) is activated as β approaches/passes
the value m2.

Working most conveniently from (24) we find that the Fourier coefficients
“switch on sequentially” as β increases (see the figure), and that in the limit
β → ∞ (22.1) becomes

lim
β↑∞

g(θ;β) = δ(θ − 0) = 1√
2π

C0(θ) +
∞∑

m=1

1√
π
Cm(θ) =

∞∑
m=0

Cm(θ)Cm(0)

which can be read as an allusion to the completeness of the functions
{
Cm(θ)

}
.5

Whether it is exactly or only approximately that the gm are known, and
whether they refer to the “circular Gaussian” or to some other (symmetric)
distribution function, the equation

ϕ(t, x, z) =
∑
m

gm

∫ +π

−π

Cm(θ)ei[ ωt−xκ sin θ−zκ cos θ] dθ

describes an invariably exact solution of the wave equation. Our job is to
perform the integrations. To that end we adopt the polar notation introduced
at (18), writing

ϕm =




1√
2π

∫ +π

−π

cos[ωt−κr cos(θ−α)] dθ : m = 0

1√
π

∫ +π

−π

cos[mθ] cos[ωt−κr cos(θ−α)]dθ : m= 1, 2, 3, . . .

5 The argument suggests a technique for establishing completeness in much
more general situations: expand a representation of the δ -function, then pass
to the limit.
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Mathematica supplies
ϕ0 =

√
2π cosωt · J0(κr) (25.0)

while in higher order we write∫ +π

−π

cos[mθ] cos[ωt−κr cos(θ−α)]dθ =
∫ +π−α

−π−α

cos[m(ϑ + α)] cos[ωt−κr cosϑ ]dθ

=
∫ +π

−π

cos[m(ϑ + α)] cos[ωt−κr cosϑ ]dθ because integrand periodic

=
∫ +π

−π

{
cos[mα ] cos[mϑ ] − sin[mα ] sin[mϑ ]

}
cos[ωt−κr cosϑ ]dθ

= cos[mα ] ·
∫ +π

−π

{
cos[mϑ ] cos[ωt−κr cosϑ ]dθ because sin[mϑ ] is odd

and obtain

ϕ1 = +2
√
π sinωt cos 1α · J1(κr) (25.1)

ϕ2 = −2
√
π cosωt cos 2α · J2(κr) (25.2)

ϕ3 = −2
√
π sinωt cos 3α · J3(κr) (25.3)

ϕ4 = +2
√
π cosωt cos 4α · J4(κr) (25.4)

ϕ5 = +2
√
π sinωt cos 5α · J5(κr) (25.5)

...

When r is large we have (see Abramowitz & Stegun, 9.2.1)

ϕ0 ∼
√

2π cosωt ·
√

2/πκr cos(κr − 1
4π) : omnidirectional

ϕ1 ∼ +2
√
π sinωt cos 1α ·

√
2/πκr cos(κr − 3

4π)

ϕ2 ∼ −2
√
π cosωt cos 2α ·

√
2/πκr cos(κr − 5

4π)

ϕ3 ∼ −2
√
π sinωt cos 3α ·

√
2/πκr cos(κr − 7

4π)

ϕ4 ∼ +2
√
π cosωt cos 4α ·

√
2/πκr cos(κr − 9

4π)

ϕ5 ∼ +2
√
π sinωt cos 5α ·

√
2/πκr cos(κr − 11

4 π)
...

That the functions (25) are, in fact, exact solutions of the wave equation follows
quickly from the observation that in polar coordinates the wave operator{(

1
c

∂
∂t

)2 −
(

∂
∂x

)2 −
(

∂
∂z

)2
}

becomes
{(

1
c

∂
∂t

)2 −
(

∂
∂r

)2 − 1
r

∂
∂r − 1

r2

(
∂
∂α

)2
}

which when applied to ϕm gives6 ϕ = [κ2 − (ω/c)2]ϕ = 0. The functions (25)
are precisely the functions that would have resulted had we undertaken to solve
ϕ = 0 by separation of variables in polar coordinates, and retained only the

solutions that conform to the side condition ϕ(t, r, α) = ϕ(t, r,−α).

6 Use
{(

∂
∂r

)2+ 1
r

∂
∂r

}
Jm(r) =

(
m2

r2 −1
)
Jm(r) or Mathematica’s FullSimplify

command.
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Figure 9: In each polar plot the red loop derives from

g(θ;β) ≡
√

β/4π sec2 1
2θ · e

−β tan2 1
2 θ

(see again page 10) with β = 10. The black loops derive from

g(θ;β, n) ≡ 1
2π + 1

π

n∑
m=1

e−m2/β cosmθ

with (reading from top to bottom) n = 2, 4, 8. The surviving error
can be attributed to the fact that we took the Fourier coefficients to
be given by (24) rather than by the exact equations (23).



18 Theory of lightbeams

The preceding figure demonstrates the effectiveness of our Fourier analysis
of the “circular Gaussian distribution function” g(θ;β). But the objects of
primary interest are “beams;” we have only incidental interest in “Gaussian
beams” . . . so it is gratifying to discover that we are in position now to construct
beams in great variety by assigning values to the coefficients gm(β) that differ
how ever we please from those described at (23/24). In each case we are able
to describe exactly (if as a series of Bessel functions) the resulting field.

But within the universe of beams the Gaussian beam—of which I a moment
ago spoke dismissively—occupies a special place. That is because it supports an
infinite population of sibling beams, “Gaussian beams of higher modal order”
. . .which collectively provide a natural basis in “beam space.” I turn now to a
description of how this comes about.

3. Higher modes of a Gaussian beam. At (7) we looked to a particular solution
of {(

∂
∂x

)2
}
ψ(x, z) = 2iκ ∂

∂zψ(x, z) (6)

—namely, the “diffusive solution”

ψ(x, z) = 1√
1 − i(z/Z)

exp
{
− a

x2

1 − iz/Z

}
: 2aZ ≡ κ (7)

that “evolves in time z” from ψ(x, 0) = e−ax2
. Concerning that evolution

process:

We know from the quantum mechanics of a free particle that the solution
of (

∂
∂x

)2
ψ(x, t) = − 2m

�
i ∂
∂tψ(x, t)

that evolves dynamically from ψ(x, 0) can be described

ψ(x, t) =
∫ +∞

−∞
K(x, t; y, 0)ψ(y, 0) dy

where the “free particle propagator” is given by

K(x, t; y, 0) =
√

m/2πi�t exp
{
i
�

m
2

(x− y)2

t

}
In the present context we expect therefore to have

ψ(x, z) =
∫ +∞

−∞
K(x, z; y, 0)ψ(y, 0) dy (26)

with (replace m/� −→ −κ = −2aZ)

K(x, z; y, 0) =
√

iaZ/πz exp
{
− iaZ

(x− y)2

z

}
and by computation find that indeed∫ +∞

−∞
K(x, z; y, 0) e−ay2

dy = expression on the right side of (7)
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The process just illustrated will acquire special importance in a moment.

It is evident that if ψ(x, z) is a solution of (6) then so also is

ψm(x, z) ≡ a−
m
2

(
− ∂

∂x

)m
ψ(x, z)

where the factor a−
m
2 has been introduced so as to make ψ and ψm have

the same physical dimension. But by Rodrigues’ construction of the Hermite
polynomials (known to Mathematica as HermiteH[m,ξ]) we have

(
− d

dξ

)m
e−ξ2

= Hm(ξ)e−ξ2
with

H0(ξ) = 1
H1(ξ) = 2ξ

H2(ξ) = 4ξ2 − 2

H3(ξ) = 8ξ3 − 12ξ

H4(ξ) = 16ξ4 − 48ξ2 + 12
...

It now follows that
ψm(x, 0) = Hm(

√
ax)e−ax2

(27.0)

and that

ψm(x, z) = a−
m
2

(
− ∂

∂x

)m 1√
1 − i(z/Z)

exp
{
− a

x2

1 − iz/Z

}

=
[

1√
1 − i(z/Z)

]1+m

Hm

[ √
a x√

1 − i(z/Z)

]
exp

{
− a

x2

1 − iz/Z

}
(27.1)

Mathematica confirms (in low-order cases) that ψm(x, z) is in fact a solution of
the beam equation (6):

{(
∂
∂x

)2 − 4iaZ ∂
∂z

}
ψm(x, z) = 0

The functions (27.1) give back (27.0) at z = 0, and (much less obviously, but
which Mathematica is quick again to confirm) can be recovered from the latter
means of the propagation formula (26).

We are informed, however, that when work-a-day laser physicists refer to
the higher modes of a Gaussian beam they have in mind a related but distinct
population of “Gaussian siblings,” namely the functions7

7 See page 176 in O. Svelto’s classic text Principles of Lasers (3rd edition
) and §3.3 in H. Kogelnik & T. Li, “Laser beams and resonators,” Appl.
Opt. 5, 1550 (1966). I have pulled back their 3-dimensional result to two space
dimensions.
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Ψm(x, z) =
[

1
1 + (z/Z)2

] 1
4

Hm

[ √
2a x√

1 + (z/Z)2

]
ei[ 12+m] arctan(z/Z) (28.1)

· exp
{
− a

x2

1 − iz/Z

}

That these functions do in fact satisfy the beam equation is readily verified (in
any specific low order) by explicit calculation. At the beam waist z = 0 we have

↓
= Hm(

√
2a x)e−ax2

(28.0)

from which we do in fact recover (28.1) if we use (26) to propagate up and down
the z-axis. Comparison of (28.0) with (27.0) shows how very closely related the
ψm and Ψm families are . . . and yet there is a world of difference:

• The red factor in (28.1) is manifestly real: the functions Ψm are readily
brought to polar form, with explicit phase factors, while the ψm are
profoundly complex.

• Write

ei[ 12+m] arctan(z/Z) exp
{
− a

x2

1 − iz/Z

}

= exp
{
− a

x2

1 + (z/Z)2
}
· exp

{
i
[(

1
2 + m

)
Φ− a

x2

1 + (z/Z)2
(z/Z)

]}

with Φ(z) ≡ arctan(z/Z). Construct (see again (4))

φm(x, z) = e−iκz · Ψm(x, z)

and observe that, while the equi-phase contours

κz −
(

1
2 + m

)
Φ + a

x2

1 + (z/Z)2
(z/Z) = constant : κ = 2aZ

of the functions φm are m-dependent, their curvature as they cross the
z-axis is, by an argument which I will omit,8 m-independent—the same
in all modes. The φm derived from (27.1) are, in consequence of their
profound complexity, readily seen to possess no such property. The point
acquires technological importance from the necessarily fixed shape of the
mirrors at the ends of a laser cavity.

Svelto presents (28.1) with an “it can be shown” and an allusion to the obscure
depths of the theory of resonators. Kogelnik & Li omit the details of their
argument “because of space limitations.” In §4 I sketch an analytical line of
argument from which the functions Ψ(x, z) emerge with a kind of inevitability
as “natural constructs.”

8 See classical electrodynamics () pages 325–326 for the details.
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The “higher modes of a Gaussian beam” is evidently a phrase to which
one can attach a variety of specific meanings. If the Ψm modes are to be
assigned pride of place, it must be on physical grounds: namely, that those
are—for reasons traceable (as suggested above) to the detailed physics of beam
production—the modes encountered in the laboratory.

The alternative modal definitions share (among others) this important
property: starting from either, one can use the orthogonality of the Hermite
polynomials ∫ +∞

−∞
Hm(ξ)Hn(ξ)e−ξ2

dξ =
√
πm!2mδmn

to construct modal superpositions that possess any prescribed structure at the
beam waist. What we have now in hand are, in effect, two alternative “bases
in beam space”—two to be joined soon by infinitely many others.

4. Development of modal properties by the generating function method. We have
several times drawn general inferences from evidence supplied by Mathematica
in a few low-order cases. It is obvious, however, that such a procedure, for all its
heuristic value, can never provide formal proof of infinite sets of propositions.
I describe here how, in the circumstances at hand, the elegant “generating
function method” can be used to bridge the gap. By way of orientation . . .

It is well known (and known, in particular, to Mathematica) that

∞∑
m=0

1
m!Hm(ξ)un = e−u2+2ξu

Arguing as follows

∞∑
m=0

∞∑
n=0

1
m!

1
n!

{ ∫ +∞

−∞
Hm(ξ)Hn(ξ)e−ξ2

dξ

}
unvn

=
∫ +∞

−∞
e−u2+2ξue−v2+2ξve−ξ2

dξ

=
√
πe2uv

=
∞∑

m=0

∞∑
n=0

1
m!

1
n!

{√
πm!2mδmn

}
unvn

we establish—in a single blow—the infinite set of orthogonality statements
presented at the top of the page.

Taking inspiration now from (27.0), we construct the generating function

g(x, 0;u) ≡
∞∑

m=0

1
m!ψm(x, 0)um =

∞∑
m=0

1
m!Hm(

√
ax)e−ax2

um

= e−u2+2
√

axu−ax2
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and use (26) to propagate that function up and down the z-axis:

g(x, z;u) =
∫ +∞

−∞
K(x, z; y, 0) g(y, 0;u) dy

K(x, z; y, 0) =
√
iaZ/πz exp

{
− iaZ

(x− y)2

z

}

= 1√
1 − iz/Z

exp
{
− (u−√

ax)2

1 − iz/Z

}

= 1√
1 − iz/Z

e−u2+2
√

aux exp
{
− a

x2

1 − iz/Z

}

= 1√
1 − iz/Z

{ ∞∑
m=0

1
m!Hm(

√
ax)um

}
exp

{
− a

x2

1 − iz/Z

}

Here u ≡ u/
√

1 − iz/Z and x ≡ x/
√

1 − iz/Z, so we have

=
∞∑

m=0

1
m!

[
1√

1 − iz/Z

]1+m

Hm

[ √
ax√

1 − iz/Z

]
exp

{
− a

x2

1 − iz/Z

}
um

which is to say: we have recovered precisely the beam modes (27.1). That each
is in fact a solution of the beam equation follows simply and elegantly from the
observation that

{(
∂
∂x

)2 − 4iaZ ∂
∂z

}
g(x, z;u) = 0 : all u

Which brings me finally to the main point of this discussion. Taking our
inspiration now from (28.0) we construct

G(x, 0;u; b) ≡
∞∑

m=0

1
m!Hm(b

√
ax)e−ax2

um

= e−u2+2b
√

axu−ax2

which gives back g(x, 0;u) at b = 1 and

↓

=
∞∑

m=0

1
m!Ψm(x, 0)um at b =

√
2

Drawing again upon (26) to propagate up and down the z-axis, we find

G(x, z;u; b) = 1√
1 − iz/Z

exp
{
− iZ − (b2 − 1)z

iZ + z
u2 +

2b
√
aux

1 − iz/Z
− ax2

1 − iz/Z

}
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which is found to satisfy

{(
∂
∂x

)2 − 4iaZ ∂
∂z

}
G(x, z;u; b) = 0 : all u , all b

and from which it follows in particular that

G(x, z;u; 1) = g(x, z;u) : described above

G(x, z;u;
√

2) = 1√
1 − iz/Z

exp
{
− 1 + iz/Z

1 − iz/Z
u2 + 2

√
2aux

1 − iz/Z
− ax2

1 − iz/Z

}

But if 1 + iz/Z =
√

1 + (z/Z)2eiΦ then 1 − iz/Z =
√

1 + (z/Z)2e−iΦ and we
have

G(x, z;u;
√

2) =
[

1√
1 + (z/Z)2

] 1
2

e
1
2 iΦ

· exp
{
− e2iΦu2 + 2eiΦu

√
2ax√

1 + (z/Z)2

}
exp

{
− ax2

1 − iz/Z

}

=
∞∑

m=0

1
m!

{[
1

1 + (z/Z)2

] 1
4

Hm

[ √
2ax√

1 + (z/Z)2

]

· exp
{
− ax2

1 − iz/Z
+ i

(
1
2 + m

)
Φ
}}

um

=
∞∑

m=0

1
m!Ψm(x, z)um

To summarize: the generating function G(x, z;u; b) at the bottom of the
preceding page presents a b -parameterized infinitude of alternative beam-modal
definitions. But special simplifications attach to the expression

iZ − (b2 − 1)z
iZ + z

in the cases b = 0 (trivial), b = 1 and b =
√

2. Exploitation of those
simplifications has been shown to lead to the ψm-modes (27.1) and Ψm-modes
(28.1), respectively—constructions which in this sense occupy preferred places
within the range of possibilities.

Since the present essay is addressed primarily to the construction of an
exact theory of (electromagnetic) beams, I should perhaps emphasize that the
discussion this and the preceding section has been concerned with an aspect of
the standard approximate theory of (scalar) beams. It has been developed in
response to some perceptive critical remarks by Morgan Mitchell, who brought
to my attention a defect in an earlier version of this material.
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3-dimensional theory

5. Spherical shadow of a bivariate Gaussian. Figure 2 alludes to a technique for
erecting distributions on the circle (of radius κ ) by stereographic projection
from distributions on the line. Here I describe how, by essentially the same
technique, distributions on the plane can be stereographically reinterpreted as
distributions on the sphere. Let

{
u, φ

}
refer to a polar coordinatization of the

plane, and let

G(u, φ)u dudφ =




weight assigned to the differential
neighborhood u dudφ of the planar point
with radial/angular address

{
u, φ

}

We will have interest mainly in rotationally-invariant (or axially-symmetric, or
φ-independent) distributions G(u): for those we have

G(u) 2πu du =
{

weight assigned to the differential ring of radius u
and width du, concentric about the origin

And of those we will restrict our attention mainly (compare (14.1)) to the
Gaussian case

G(u) = 1
4πae

− 1
4a u2

. . . in which connection we observe that∫ ∞

0

1
4πae

− 1
4a u2 · 2πu du = 1

We place the origin of the
{
u, φ

}
-system at the North Pole of the sphere,

on which we inscribe spherical coordinates:

θ ≡ co-latitude (see again Figure 2)
φ ≡ longitude

The du× udφ neighborhood of the point
{
u, φ

}
=

{
2κ tan 1

2θ, φ
}

on the plane
projects to the κdθ×κ sin θ dφ neighborhood of the point

{
θ, φ

}
on the sphere.

To obtain the projected distribution g(θ, φ) we write

g(θ, φ)κ2 sin θ dθdφ = G(u, φ)u dudφ

= G(2κ tan 1
2θ, φ) 2κ tan 1

2θ · κ sec2 1
2θ dθdφ

giving

g(θ, φ) =
2κ tan 1

2θ · κ sec2 1
2θ

κ2 sin θ
·G(2κ tan 1

2θ, φ)

= sec4 1
2θ ·G(2κ tan 1

2θ, φ)
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In the presence of rotational invariance nothing happens except that the φ’s on
left and right become moot, and for Gaussian distributions centered at the pole
we have (compare (14.2) and the bottom of page 10)

g(θ, φ) =
[
κ 1√

4πa
sec2 1

2θ
]2

e−
1
a κ2 tan2 1

2 θ : φ-independent

=
[√

β/4π sec2 1
2θ

]2

e−β tan2 1
2 θ (29)

β ≡ κ2/a

To test this result we look to∫ π

0

{ ∫ 2π

0

g(θ, φ) sin θ dφ

}
dθ =

∫ π

0

(β/4π) sec4 1
2θ · e

−β tan2 1
2 θ 2π sin θ dθ

and are gratified to be informed by Mathematica that

NIntegrate[Evaluate[etc, {θ, 0, π}]] = 1.

where representative values are assigned to β. Note the adjusted lower limit on
the θ-integral: formerly negative values of θ are now subsumed in the φ-sweep
around the sphere.

When presented with a function of the generic form g(θ, φ) it is natural to
contemplate writing

g(θ, φ) =
∞∑

�=0

m=+�∑
m=−�

gm
� Y m

� (θ, φ) (30.1)

and using the orthonormality of the spherical harmonics to obtain

gm
� =

∫ π

0

∫ 2π

0

g(θ, φ)
[
Y m

� (θ, φ)
]∗ sin θ dφdθ (30.2)

How does the normalization condition∫ π

0

∫ 2π

0

g(θ, φ) sin θ dφdθ = 1

fit within such a scheme? We have9

∫ π

0

∫ 2π

0

Y m
� (θ, φ) sin θ dφdθ =

{√
4π if m = � = 0
0 otherwise

so normalization forces g0
0 = 1√

4π
but places no restriction on the other

coefficients gm
� , essentially because Y m

� (θ, φ) ⊥ Y 0
0 (θ, φ) ≡ 1√

4π
.

9 Mathematica—which responds with√
2�+1
4π

(�−m)!
(�+m)!P

m
� (cos θ)eimφ

to the command SphericalHarmonicY[�,m, θ, φ]—can be used to construct
experimental evidence for all such claims.
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Figure 10: Stepping up from 2 to 3 dimensions is shown on the
preceding page to entail an adjustment of the form

√
β/4π sec2 1

2θ −→
[√

β/4π sec2 1
2θ

]2

the effect of which—as illustrated in this cross-section of the
spherical plot (compare Figure 3: the same parameter values have
been used here as there)—is to sharpen the distribution.

If g(θ, φ) is in fact φ-independent (i.e., if the distribution is axially
symmetric) than only the “zonal harmonics”10

Y 0
� (θ) =

√
2�+1
4π P�(cos θ)

10 See Philip Morse & Herman Feshbach, Methods of Theoretical Physics
(), page 1264 for discussion of this and some related terminology.
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contribute to the sum (30.1): we have

g(θ) = 1
4π +

∞∑
�=1

g�Y
0
� (θ) (31.1)

g� =
∫ π

0

g(θ)Y 0
� (θ) 2π sin θ dθ (31.2)

If, in particular, g(θ) has the β-dependent Gaussian design (29) then

g�(β) =
∫ π

0

[√
β/4π sec2 1

2θ
]2

e−β tan2 1
2 θ ·

√
2�+1
4π P�(cos θ) · 2π sin θ dθ

Alternatively: if cos θ ≡ w then sin θ dθ = −dw and11

sec2 1
2θ = 2

1 + w
and tan2 1

2θ = 1 − w
1 + w

so we can write

g�(β) =
∫ +1

−1

[√
β/4π 2

1+w

]2

e−β 1−w
1+w ·

√
2�+1
4π P�(w) · 2π dw

The integral is a little delicate because, though the integrand is well-behaved on
the interval, it has an essential singularity at w = 1. A second change of variable
ameliorates the problem: write 1−w

1+w ≡ u. Then w = 1−u
1+u , dw = − 2

(1+u)2 du,
2

1+w = 1 + u and

=
∫ ∞

0

[√
β/4π (1 + u)

]2

e−βu ·
√

2�+1
4π P�(

1−u
1+u ) · 2π 2

(1+u)2 du

= 1√
4π

∫ ∞

0

β
√

2� + 1 e−βuP�(
1−u
1+u ) du (32)

The former weak pathology at w = −1 has now been removed to u = ∞ and
rendered quite benign: Mathematica now does the integration uncomplainingly,
but produces longer and longer strings of incomplete gamma functions and
Meijer G-functions.12,13 Specifically

11 See Abramowitz & Stegun, 4.3.21 & 4.3.22. These “half-angle formulas”
are in obvious conformity with sec2 z − tan2 z = 1.

12 Than which there are few things more horrible. See Gradshteyn & Ryzhik,
Table of Integrals, Series, and Products (), §9.3.

13 A final change of variable recommends itself: write u = v2. Then du = 2v dv
and we have

g� = 1
2

√
β(2� + 1)

∫ +∞

−∞

[√
β/π e−βv2

]
P�(

1−v2

1+v2 ) |v| dv

The expression in square brackets → δ(v) as β ↑ ∞, but because of the dangling√
β leads us not very usefully to an expression of the indefinite form ∞ · 0.
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g0(β) = 1√
4π

{
1
}

: all β

g1(β) = 1√
4π

{√
3β

[
− β –1 + 2 eβGamma[0, β ]

]}

g2(β) = 1√
4π

{√
5β

[
+ β –1 + 6 − (6 + 9

2β) eβGamma[0, β ]
]

− 3
2e

βMeijerG[{{}, {2}}, {{1, 1}, {}}, β]
}

g3(β) = 1√
4π

{√
7β

[
− β –1 − 20 + (quadratic in β) eβGamma[0, β ]

+ eβ(linear combination of 3 MeijerG functions)
]}

Mathematica -assisted numerical/graphical analysis of the complicated
expressions on the right suggests (if somewhat ambiguously: see below) that

lim
β↑∞

g�(β) =
√

2�+1
4π (33)

Such a result would be in gratifyingly precise conformity with the following point
of general principle: Suppose functions ϕn(x) are orthonormal and complete on
the interval a � x � b:

f(x) =
∑

n

{∫ b

a

f(x)ϕ∗
n(x) dx

}
ϕn(x) : all nice functions f(x)

Then
δ(x− x0) =

∑
n

ϕ∗
n(x0)ϕn(x) : x&x0 ∈ [a, b]

For spherical harmonics we expect therefore to have this representation of the
“spherical δ-function”:

δ(θ − θ0)δ(φ− φ0) =
∑

�

m=+�∑
m=−�

[
Y m

� (θ0, φ0)
]∗
Y m

� (θ, φ)

Within the space of nice axially-symmetric spherical functions f(θ) the “zonal
harmonics” are by themselves complete, and we expect to have

δ(θ − θ0) =
∑

�

[
Y 0

� (θ0)
]∗
Y 0

� (θ)

which at the North Pole becomes

δ(θ) =
∑

�

[
Y 0

� (0)
]∗
Y 0

� (θ)

=
∑

�

√
2�+1
4π Y 0

� (θ) (34)



Spherical shadow of a bivariate Gaussian 29

But if we return with (33) to (32)—which in the Gaussian case reads

g(θ, β) =
∞∑

�=0

g�(β)Y 0
� (θ) (35)

—and if we take into account the notion that

spherical Gaussian g(θ, β) −−−−−−−−−−−−→
β↑∞

spherical δ(θ)

then we recover precisely (34). Which inspires increased confidence in the
accuracy of (33).

But to deposit the distribution δ(θ) on the κ -sphere in kkk -space is to identify
a plane wave (one that runs parallel to the 3-axis). If our goal is a theory
of beams then we have interest in structured “pencils” of kkk -vectors . . .must
deposit something like a narrow Gaussian distribution (or “fat” δ-function) on
the κ -sphere. We are forced, therefore, to look more closely to the structure of
the function g(θ, β) with β large but finite. This I for the moment interpret as
an obligation to look more closely to the functions coefficients g�(β). To reduce
the clutter we write

g�(β) =
√

2�+1
4π G�(β)

and look to the functions

G�(β) ≡
∫ ∞

0

βe−βuP�

(
1−u
1+u

)
du

=
∫ ∞

0

e−tP�

(
β−t
β+t

)
dt (36)

Immediately
G0(β) = 1 : all β

but already at � = 1 the situation becomes typically non-trivial: Mathematica
supplies (as reported already on page 28)

G1(β) = −1 + 2βeβΓ (0, β)

When we ask Mathematica to report the value of G1(0) she complains

"Indeterminate expression 0∞ encountered"

though it is an obvious implication of (36) that

G�(0) =
∫ ∞

0

e−tP�(−1) dt = (−)�

∫ ∞

0

e−t dt = (−)�

Looking to the asymptotic properties of G�(β), in which we have greater interest:
when we use the command Series[G1(β),{β,Infinity,3}] to ask for the
asymptotic behavior as β ↑ ∞ we get the response

"Essential singularity encountered..."
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On the other hand, Spanier & Oldham report14 the “important asymptotic
expansion”

z1−aezΓ (a, z) ≈ 1 − 1 − a

z
+

(1 − a)(2 − a)
z2

− (1 − a)(2 − a)(3 − a)
z3

+ · · ·

to which they attach no qualifications, and from which it would follow that

G1(β) ≈ 1 − 2β−1 + 2!2β−2 − 3!2β−3 + · · ·

This result can be reproduced/generalized by the following elementary
procedure: noting that the e−t factor discriminates against large values of t, we
introduce into (36) the expansion

P1

(
β−t
β+t

)
= 1 − 2

β t + 2
β2 t

2 − 2
β3 t

3 + · · ·

and by term-by-term integration obtain

G1(β) ≈ 1 − 2
β + 4

β2 − 12
β3 + · · ·

Similarly

P2

(
β−t
β+t

)
= 1 − 6

β t + 12
β2 t

2 − 18
β3 t

3 + · · ·
P3

(
β−t
β+t

)
= 1 − 12

β t + 42
β2 t

2 − 92
β3 t

3 + · · ·
P4

(
β−t
β+t

)
= 1 − 20

β t + 110
β2 t

2 − 340
β3 t

3 + · · ·
...

which give

G2(β) ≈ 1 − 6
β + 24

β2 − 108
β3 + · · ·

G3(β) ≈ 1 − 12
β + 84

β2 − 552
β3 + · · ·

G4(β) ≈ 1 − 20
β + 220

β2 − 2040
β3 + · · · (37)

...
G�(β) ≈ 1 − �(�+1)

β + · · ·
↑—these remove the ambiguity from (33)

It is interesting that Mathematica describes G�(β) in closed form, but in terms
of such complicated combinations of such fancy functions that it gets confused
when trying to evaluate G�(β) when β is larger than some relatively small
�-dependent critical value (see Figure 11). It does, however, seem to encounter
no difficulty when asked to plot G�(β) with 0 � β � 1.

14 An Atlas of Functions (), 45:6:6 page 440.
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Figure 11: Record of Mathematica’s failed attempt to plot its
exact analytic description of G2(β), which marks the lowest-order
occurance of Meijer G-functions. Shown in red is the a graph of the
asymptotic approximant (37), while the unit asymptote is shown in
blue. Note that—rather surprisingly—Mathematica experiences no
difficulty when β is small.

Suppose we were, on the basis of our imperfect (leading-order asymptotic)
knowledge of G�(β), to construct (see again (31.1))

g(θ, β) ≡
∞∑

�=1

g�(β)Y 0
� (θ) (38.1)

g�(β) =
√

2�+1
4π

{
1 − �(�+1)

β

}
(38.2)

Then ∫ π

0

g(θ, β) 2π sin θ dθ = g0(β)
√

4π = 1 : all β

lim
β↑∞

g(θ, β) =
∞∑

�=1

√
2�+1
4π Y 0

� (θ) =
∞∑

�=1

[
Y 0

� (0)
]∗
Y 0

� (θ) = δ(θ)

show that in (38) we have a β-parameterized class of normalized functions that
yield the δ-function in the limit β ↑ ∞. But what the preceding equations really
indicate is that we have labored long and hard to achieve a disappointing
result. We have learned that (38) can be written

g(θ, β) = δ(θ) + β−1 · (function that averages to zero)

The expression the right is not everywhere non-negative (therefore of no interest
as a probability distribution) and describes not a “fat” δ -function but a trivially
“decorated” δ -function: it presents an explicit δ -function, so it can have nothing
useful to contribute to the representation theory of δ -functions, and so far as



32 Theory of lightbeams

I can see it has nothing useful to contribute either to the physical theory of
optical beams. The introduction of spherical harmonics has in this instance led
us astray. It is as though we had proceeded from the identity

√
β/π e−βx2

= 1
2π

∫ +∞

−∞
e−k2/4β cosxk dk

(note the normalized Gaussian on the left) to write

= 1
2π

∫ +∞

−∞

{
1 − 1

2! (k
2/4β)2 + 1

4! (k
2/4β)4 − · · ·

}
cosxk dk

= lim
K↑∞

∫ +K

−K

1
2π cosxk dk − lim

K↑∞

∫ +K

−K

1
64πβ2 k

4 cosxk dk + · · ·

= lim
k↑∞

sin kx
πx

− β−2

{
lim

K↑∞

∫ +K

−K

1
64π k4 cosxk dk + · · ·

}

= δ(x) − β−2 · (complicated “decorations”)

It is interesting that we have managed to convert one representation of δ(x)
into another

lim
β↑∞

√
β/π e−βx2

= lim
k↑∞

sin kx
πx

= δ(x)

but in most contexts any argument that would describe representations of delta
functions in terms of naked delta functions is an argument that marches in the
wrong direction.

The short of it: spherical harmonics may well have something to contribute
to the theory of lightbeams, but their introduction at (30) led us astray. Better
to work with the Gaussian left side of that equation.

6. ?.


